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52 Abstract

53 General Circulation Models (GCMs) suggest that rising concentrations of greenhouse gases will have significant implications for
54 climate at global and regional scales. Less certain is the extent to which meteorological processes at individual sites will be affected.
55 So-called ‘downscaling’ techniques are used to bridge the spatial and temporal resolution gaps between what climate modellers are
56 currently able to provide and what impact assessors require. This paper describes a decision support tool for assessing local climate
57 change impacts using a robust statistical downscaling technique. Statistical DownScaling Model (sdsm) facilitates the rapid develop-
58 ment of multiple, low-cost, single-site scenarios of daily surface weather variables under current and future regional climate forcing.
59 Additionally, the software performs ancillary tasks of predictor variable pre-screening, model calibration, basic diagnostic testing,
60 statistical analyses and graphing of climate data. The application ofsdsm is demonstrated with respect to the generation of daily
61 temperature and precipitation scenarios for Toronto, Canada by 2040–2069. 2001 Published by Elsevier Science Ltd.
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921. Introduction

93Even if global climate models in the future are run at
94high resolution there will remain the need to ‘down-
95scale’ the results from such models to individual sites
96or localities for impact studies (Department of the
97Environment, 1996; p. 34)

98General Circulation Models (GCMs) suggest that ris-
99ing concentrations of greenhouse gases will have sig-
100nificant implications for climate at global and regional
101scales. Unfortunately, GCMs are restricted in their use-
102fulness for local impact studies by their coarse spatial
103resolution (typically of the order 50,000 km2) and
104inability to resolve important sub-grid scale features
105such as clouds and topography. As a consequence, two
106groups of techniques have emerged as a means of relat-
107ing regional-scale atmospheric predictor variables to
108local-scale surface weather. Firstly, statistical downsca-
109ling is analogous to the ‘model output statistics’ (MOS)
110and ‘perfect prog’ approaches used for short-range
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111 numerical weather prediction (Klein and Glahn, 1974).
112 Secondly, Regional Climate Models (RCMs) simulate
113 sub-GCM grid-scale climate features dynamically using
114 time-varying atmospheric conditions supplied by a GCM
115 bounding a specified domain. Both approaches will con-
116 tinue to play a significant role in the assessment of
117 potential climate change impacts arising from future
118 increases in greenhouse-gas concentrations (IPCC-
119 TGCIA, 1999).
120 As the following paragraphs indicate, statistical down-
121 scaling methodologies have several practical advantages
122 over dynamical downscaling approaches. In situations
123 where a low-cost, rapid assessment of highly localized
124 climate change impacts is required, statistical downsca-
125 ling (currently) represents the more promising option. In
126 this paper we describe a software package, and
127 accompanying statistical downscaling methodology, that
128 enables the construction of climate change scenarios for
129 individual sites at daily time-scales, using grid resolution
130 GCM output. The software is named Statistical Down-
131 Scaling Model (sdsm) and is coded in Visual Basic 6.0.
132 As far as the authors are aware, sdsm is the first tool
133 of its type offered to the broader climate change impacts
134 community. Most statistical downscaling models are
135 generally restricted in their use to specialist researchers
136 and/or research establishments. Other software, while
137 more accessible, produces relatively coarse regional
138 scenarios of climate change (both spatially and
139 temporally). For example, scengen (Hulme et al., 1995)
140 blends and re-scales user-defined combinations of GCM
141 experiments, and then interpolates monthly climate
142 change scenarios onto a 5° latitude×5° longitude global
143 grid. ‘Weather generators’ — such as wgen
144 (Richardson, 1981), lars-wg (Semenov and Barrow,
145 1997) or cligen (Nicks et al., 1995) — are widely used
146 in the hydrological and agricultural research communi-
147 ties, but do not directly employ GCM output in the scen-
148 ario construction processes (Wilks, 1992).
149 Following a brief review of downscaling techniques,
150 we describe the structure and operation of sdsm with
151 respect to five distinct tasks: (1) preliminary screening
152 of potential downscaling predictor variables; (2)
153 assembly and calibration of sdsm(s); (3) synthesis of
154 ensembles of current weather data using observed pre-
155 dictor variables; (4) generation of ensembles of future
156 weather data using GCM-derived predictor variables; (5)
157 diagnostic testing/analysis of observed data and climate
158 change scenarios. The paper concludes with an appli-
159 cation of sdsm to climate change scenario generation for
160 Toronto, Canada, comparing downscaled daily precipi-
161 tation and temperature series for 1961–1990 with
162 2040–2069.
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1632. Downscaling techniques

164The general theory, limitations and practice of down-
165scaling have been discussed in detail elsewhere (see
166Giorgi and Mearns, 1991; Wilby and Wigley, 1997; Xu,
1671999). These reviews group downscaling methodologies
168into four main types: (a) dynamical climate modelling,
169(b) synoptic weather typing, (c) stochastic weather gen-
170eration, or (d) regression-based approaches. Each family
171of techniques is briefly reviewed below.

1722.1. Dynamical

173Dynamical downscaling involves the nesting of a
174higher resolution RCM within a coarser resolution GCM
175(see McGregor, 1997; Giorgi and Mearns, 1999). The
176RCM uses the GCM to define time-varying atmospheric
177boundary conditions around a finite domain, within
178which the physical dynamics of the atmosphere are mod-
179elled using horizontal grid spacings of 20–50 km. The
180main limitation of RCMs is that they are as compu-
181tationally demanding as GCMs (placing constraints on
182the feasible domain size, number of experiments and
183duration of simulations). The scenarios produced by
184RCMs are also sensitive to the choice of boundary con-
185ditions (such as soil moisture) used to initiate experi-
186ments. The main advantage of RCMs is that they can
187resolve smaller-scale atmospheric features such as oro-
188graphic precipitation or low-level jets better than the host
189GCM. Furthermore, RCMs can be used to explore the
190relative significance of different external forcings such
191as terrestrial-ecosystem or atmospheric chemistry
192changes.

1932.2. Weather typing

194Weather typing approaches involve grouping local,
195meteorological variables in relation to different classes
196of atmospheric circulation (Hay et al., 1991; Bardossy
197and Plate, 1992; von Storch et al., 1993). Future regional
198climate scenarios are constructed, either by resampling
199from the observed variable distributions (conditional on
200the circulation patterns produced by a GCM), or by first
201generating synthetic sequences of weather patterns using
202Monte Carlo techniques and resampling from observed
203data. The main appeal of circulation-based downscaling
204is that it is founded on sensible linkages between climate
205on the large scale and weather at the local scale. The
206technique is also valid for a wide variety of environmen-
207tal variables as well as multi-site applications. However,
208weather typing schemes are often parochial, an inad-
209equate basis for simulating rare or extreme events, and
210entirely dependent on stationary circulation-to-surface
211climate relationships. Potentially, the most serious limi-
212tation is that precipitation changes produced by changes
213in the frequency of weather patterns are seldom consist-
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214 ent with the changes produced by the host GCM (unless
215 additional predictors such as atmospheric humidity are
216 employed).

217 2.3. Stochastic weather generation

218 Stochastic downscaling approaches typically involve
219 modifying the parameters of conventional weather gen-
220 erators such as wgen (Wilks, 1999) or lars-wg
221 (Semenov and Barrow, 1997). wgen simulates precipi-
222 tation occurrence using two-state, first-order Markov
223 chains: precipitation amounts on wet-days using a
224 gamma distribution; temperature and radiation compo-
225 nents using first-order trivariate autoregression that is
226 conditional on precipitation occurrence (see the review
227 of Wilks and Wilby, 1999). Climate change scenarios
228 are generated stochastically using revised parameter sets
229 scaled in direct proportion to the corresponding variable
230 changes in a GCM. The main advantage of the technique
231 is that it can exactly reproduce many observed climate
232 statistics and has been widely used, particularly for agri-
233 cultural impact assessment. Furthermore, stochastic
234 weather generators enable the efficient production of
235 large ensembles of scenarios for risk analysis. The key
236 disadvantages relate to the arbitrary manner in which
237 model parameters are defined for future climate con-
238 ditions, and to the unanticipated effects that these
239 changes may have on secondary variables.

240 2.4. Regression

241 Regression-based downscaling methods rely on
242 empirical relationships between local-scale predictands
243 and regional-scale predictor(s). Individual downscaling
244 schemes differ according to the choice of mathematical
245 transfer function, predictor variables or statistical fitting
246 procedure. To date, linear and non-linear regression, arti-
247 ficial neural networks, canonical correlation and princi-
248 pal components analyses have all been used to derive
249 predictor–predictand relationships (Conway et al., 1996;
250 Schubert and Henderson-Sellers, 1997; Crane and Hew-
251 itson, 1998). The main strength of the regression down-
252 scaling is the relative ease of application, coupled with
253 their use of observable trans-scale relationships. The
254 main weakness of regression-based methods is that the
255 models often explain only a fraction of the observed cli-
256 mate variability (especially in precipitation series). In
257 common with weather typing methods, regression
258 methods also assume validity of the model parameters
259 under future climate conditions, and regression-based
260 downscaling is highly sensitive to the choice of predictor
261 variables and statistical transfer function (see below).
262 Furthermore, downscaling future extreme events using
263 regression methods is problematic since these phenom-
264 ena, by definition, tend to lie at the margins or beyond
265 the range of the calibration data set.
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2662.5. Relative skill of statistical and dynamical
267downscaling techniques

268Given the wide range of downscaling techniques (both
269dynamical and statistical) there is an urgent need for
270model comparisons using generic data sets and model
271diagnostics. Until recently, these studies were restricted
272to statistical-versus-statistical (Winkler et al., 1997;
273Wilby et al., 1998a; Huth, 1999) or dynamical-versus-
274dynamical (Christensen et al., 1997; Takle et al., 1999)
275model comparisons. However, a growing number of
276studies are undertaking statistical-versus-dynamical
277model comparisons (Kidson and Thompson, 1998;
278Mearns et al., 1999a,b; Murphy, 1999; Wilby et al.,
2792000) and Table 1 lists some of the relative strengths
280and weaknesses that have been identified for the respect-
281ive methods.
282The consensus of model inter-comparison studies is
283that dynamical and statistical methods display similar
284levels of skill at estimating surface weather variables
285under current climate conditions. However, because of
286recognized inter-variable biases in host GCMs, assessing
287the realism of future climate change scenarios produced
288by statistical downscaling methods remains highly prob-
289lematic. This is because uncertainties exist in both GCM
290and downscaled climate scenarios. For example, precipi-
291tation changes projected by the U.K. Meteorological
292Office coupled ocean-atmosphere model HadCM2, are
293known to be over-sensitive to future changes in atmos-
294pheric humidity (Murphy, 2000; Wilby and Wigley,
2952000). Overall, the greatest obstacle to the successful
296implementation of both statistical and dynamical down-
297scaling is the realism of the GCM output used to drive
298the schemes.
299However, because of the parsimony and ‘ low-tech’
300advantages of statistical downscaling methods over
301dynamical modelling (Table 1), the following sections
302will report only the development and application of a
303multiple regression-based, decision support tool for
304regional climate change impact assessment.

3053. Design and application of sdsm

306Fig. 1 shows the Main Menu and functions of sdsm
307(version 2.1). The software reduces the task of statisti-
308cally downscaling daily weather series into five discrete
309processes (denoted in Fig. 2 by the heavy boxes): (1)
310screening of predictor variables; (2) model calibration;
311(3) synthesis of observed data; (4) generation of climate
312change scenarios; (5) diagnostic testing and statistical
313analyses. Before describing the theory and practice
314underlying the software’s five core operations, we first
315outline the assumed sdsm prerequisites and rec-
316ommended file protocols.
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8 Table 1
9 Comparison of the main strengths and weakness of statistical and dynamical downscaling10

17

Statistical downscaling Dynamical downscaling20

27

Strengths �Station-scale climate information from GCM-scale output �10–50 km resolution climate information from GCM-scale
output32

�Cheap, computationally undemanding and readily �Respond in physically consistent ways to different external
transferable forcings37

�Ensembles of climate scenarios permit risk/uncertainty �Resolve atmospheric processes such as orographic
analyses precipitation42

�Flexibility �Consistency with GCM45
47

Weaknesses �Dependent on the realism of GCM boundary forcing �Dependent on the realism of GCM boundary forcing51

�Choice of domain size and location affects results �Choice of domain size and location affects results54

�Requires high quality data for model calibration �Requires significant computing resources57

�Predictor–predictand relationships are often non-stationary �Ensembles of climate scenarios seldom produced60

�Choice of predictor variables affects results �Initial boundary conditions affect results63

�Choice of empirical transfer scheme affects results �Choice of cloud/convection scheme affects (precipitation)
results67

�Low-frequency climate variability problematic �Not readily transferred to new regions70

6
7

8
9

10 Fig. 1. Main menu of sdsm version 2.1.

317 3.1. sdsm prerequisites and file protocols

318 Downscaling is justified when GCM (or RCM) simul-
319 ations of the required surface variable(s) are unrealistic
320 at the temporal and spatial scales of interest — either
321 because the impact scales are below the climate model’s
322 resolution, or because of model deficiencies — yet are
323 considered realistic at larger scales and/or for other
324 related variables. The choice of downscaling technique
325 is governed largely by the availability of data for model
326 calibration, and by the variables required for impact
327 assessment. The same predictors should be available for
328 target regions from both observed and GCM data.
329 Full technical details of the sdsm scheme are provided
330 by Wilby et al. (1999). Within the taxonomy of down-
331 scaling techniques, sdsm is best described as a hybrid
332 of the stochastic weather generator and regression-based
333 methods. This is because large-scale circulation patterns
334 and atmospheric moisture variables are used to linearly
335 condition local-scale weather generator parameters (e.g.

1
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12
13

14
15

16Fig. 2. sdsm climate scenario generation process.

336precipitation occurrence and intensity). Additionally,
337stochastic techniques are used to artificially inflate the
338variance of the downscaled daily time series to better
339accord with observations. To date, the downscaling
340algorithm of sdsm has been applied to a host of meteoro-
341logical, hydrological and environmental assessments, as
342well as a range of geographical contexts including Eur-
343ope, North America and Southeast Asia (Hassan et al.,
3441998; Wilby et al. 1999, 2000; Hay et al., 2000).
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345 As Fig. 2 indicates, the sdsm procedure commences
346 with the assembly of coincident predictor and predictand
347 data sets. Although the predictands are typically individ-
348 ual daily weather series, obtained from meteorological
349 observations at single sites (e.g. daily precipitation,
350 maximum and minimum temperature, hours of sunshine,
351 wind speed, etc.), the methodology is applicable to other
352 environmental predictands (e.g. air quality parameters,
353 sea levels, snow cover, etc.).
354 Assembly of a candidate predictor suite is, by com-
355 parison, a more involved process because virtually all
356 statistical downscaling models employ gridded data such
357 as the National Centre for Environmental Prediction
358 (NCEP) re-analysis data set (Kalnay et al., 1996). This
359 means that to apply sdsm to GCM data, both observed
360 predictand and GCM data should ideally be available
361 on the same grid spacing. However, observed and GCM
362 predictor variables are seldom available at the same grid
363 resolution, requiring interpolation and re-gridding of at
364 least one of the data sets. Furthermore, the grid-box
365 nearest to the target site does not always yield the strong-
366 est predictor–predictand relationships (see Wilby and
367 Wigley, 2000). Therefore, the user should be prepared
368 to consider geographically remote domains or arrays of
369 grid points for each predictor variable.
370 As Karl et al. (1990) demonstrated, regression-based
371 downscaling methods also benefit from the standardiz-
372 ation of the predictor variables (by their respective
373 means and standard deviations) so that the corresponding
374 distributions of observed and present-day GCM predic-
375 tors are in closer agreement. This ensures that future
376 scenarios downscaled using GCM predictor variables
377 (see below) are not compromised by systematic biases
378 in climate model output. Furthermore, sufficient data
379 should be available for both model calibration and vali-
380 dation. This is because the choice of the calibration per-
381 iod (and its length), as well as the mathematical form
382 of the model relationship(s) and season definitions, all
383 determine the statistical characteristics of the downs-
384 caled scenarios (the ‘no analog’ problem) (Winkler et
385 al., 1997).
386 With the above prerequisites in mind, Table 2 lists the

79

80 Table 2
81 SDSM file names and recommended directory structure82

89

File extension Explanation Recommended directory93

100

*.DAT Observed daily predictor and predictand files employed by the calibrate and SDSM/calibration
synthesize operations (input)105

*.PAR Meta-data and model parameter file produced by the calibrate operation (output) SDSM/calibration
and used by the synthesize and generate operations (input)110

*.GCM GCM-derived predictor variable file employed by the generate operation (input) SDSM/scenarioFn114

*.SIM Meta-data produced by the synthesize and generate operations (output) SDSM/results118

*.OUT Daily predictand variable file produced by the synthesize and generate operations SDSM/results
(output)123

SCENARIO.TXT Summary statistics produced by the analyse operations (output) SDSM/results127
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387different file types employed by sdsm along with our
388recommended directory structure. All input and output
389files are single column, Text Only format. Individual
390predictor and predictand files (one variable to each file,
391time series data only) are denoted by the extension *
392.DAT. The equivalent GCM predictors should have the
393same file name but the extension *.GCM (e.g.
394Tmean.GCM is used instead of Tmean.DAT). This is neces-
395sary in order for the sdsm ‘Synthesize’ and ‘Generate
396Scenario’ functions (see below) to locate the correct pre-
397dictor variables listed in the calibration output files, *
398.PAR, and underlines the importance of a clear directory
399structure. The *.SIM file records meta-data associated
400with every downscaled scenario (e.g. number of predic-
401tor variables, ensemble size, period, etc.), and the *.OUT
402file contains an array of daily downscaled values (one
403column for each ensemble member, and one row for
404each day of the scenario). Finally, the SCENARIO.TXT
405file is created whenever the ‘Analyse’ options are acti-
406vated and records summary statistics for individual
407ensemble members or for the ensemble mean. This file
408is over-written each time either option is used.

4093.2. Screen variables

410Identifying empirical relationships between gridded
411predictors (such as mean sea level pressure) and single-
412site predictands (such as station precipitation) is central
413to all statistical downscaling methods. The main purpose
414of the ‘Screen Variables’ operation is to assist the user
415in the choice of appropriate downscaling predictor vari-
416ables. This remains one of the most challenging stages
417in the development of any statistical downscaling model
418since the choice of predictors largely determines the
419character of the downscaled climate scenario (Winkler
420et al., 1997; Charles et al., 1999). The decision process
421is also complicated by the fact that the explanatory
422power of individual predictor variables varies both spati-
423ally (Huth, 1999) and temporally (Wilby, 1997).
424Table 3 provides an example suite of daily predictor
425variables that might potentially be used to downscale
426surface variables such as daily precipitation, maximum
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136 Table 3
137 Candidate predictor variable definitions138

143

Abbreviation Description146

151

Lag-1 Predictand value from previous day154

Wet Precipitation occurrence (‘1’=wet, ‘0’=dry)157

Tmean 2 m daily mean temperature (°C)160

SH Near surface specific humidity (gm/kg)163

RH Near surface relative humidity (%)166

Mslp Mean sea level pressure (hPa)169

Ua Zonal component of geostrophic airflow (hPa)172

Va Meridional component of geostrophic airflow
(hPa)176

Fa Geostrophic airflow (hPa)179

Za Vorticity (hPa)182

z500 500 hPa geopotential height (m)185

190
a

191 Secondary variable derived from Mslp following the method of
192 Jones et al. (1993).193

427 and minimum temperatures, wind speed, solar radiation,
428 etc. Ideally, candidate predictor variables should be:
429 physically and conceptually sensible with respect to the
430 predictand; strongly and consistently correlated with the
431 predictand; readily available from archives of observed
432 data and GCM output; and accurately modelled by
433 GCMs. It is also recommended that the candidate predic-
434 tor suite contain variables describing atmospheric circu-
435 lation, thickness, stability and moisture content.
436 Having specified the target predictand along with an
437 appropriate suite of potential predictor variables
438 (including the lag-1 predictand in the case of autocorre-
439 lated time series), sdsm reports to the user only statisti-
440 cally significant predictor–predictand relationships. Sig-
441 nificant pairs are expressed as percentages of explained
442 variance, by month, at the specified confidence level.
443 Unfortunately, as Fig. 3 indicates, the explanatory power
444 of individual predictors can vary markedly on a month
445 to month basis even for closely related predictands such

19
20

21
22

23 Fig. 3. Monthly variations in the percentage of variance explained in maximum and minimum daily temperatures by the meridional flow component
24 of the surface geostrophic wind at Toronto, during the model calibration period 1981–1985.
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446as maximum and minimum daily temperatures (as
447shown). The user should, therefore, be judicious con-
448cerning the most appropriate combination(s) of
449predictor(s) for a given season and predictand. One sol-
450ution may be to evaluate a predictor suite via off-line
451partial correlation or step-wise regression analyses. The
452local knowledge base is also invaluable in determining
453sensible combinations of predictors.

4543.3. Calibrate model

455The ‘Calibrate Model’ operation takes a user-specified
456predictand along with a set of predictor variables, and
457computes multiple linear regression equations (forced
458entry method). The user specifies the model structure:
459whether monthly, seasonal or annual sub-models are
460required; whether the process is unconditional or con-
461ditional; and whether or not a lag-1 autocorrelation func-
462tion is required. The parameters of the regression model
463are obtained via the efficient dual simplex algorithm of
464Narula and Wellington (1977) and are written to a stan-
465dard format file (*.PAR).
466Unconditional models assume a direct link between
467the regional-scale predictors and the local predictand.
468For example, local wind speeds may be a function of
469gridded airflow indices such as the zonal or meridional
470velocity components. Conditional models, such as for
471daily precipitation amounts, depend on an intermediate
472variable such as the probability of wet-day occurrence.
473In this case, the two-state occurrence process (i.e. wet
474or dry day) is first modelled as a function of the regional
475forcing. Then, assuming that precipitation occurs, the
476wet-day amount is modelled conditional upon a different
477set of predictor weights (see below). Similarly, daily
478sunshine (h) might be modelled conditional on the pres-
479ence or absence of precipitation.
480Wet-day precipitation amounts are assumed to be
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481 exponentially distributed and are modelled using the
482 regression procedure of Kilsby et al. (1998). The
483 expected mean wet-day amount is empirically con-
484 strained by the algorithm to equal the observed mean
485 wet-day amount of the calibration period. Note that pre-
486 cipitation amounts are a special case in which an auto-
487 correlation function is not explicitly included by the
488 regression equation. Instead, serial correlation between
489 successive wet-day amounts may be incorporated
490 implicitly by lagged predictor variables. This maximizes
491 the availability of precipitation data for calibration by
492 including wet-days that are preceded by dry-days.
493 Finally, the calibration algorithm reports the percent-
494 age of explained variance and standard error for each
495 regression model type (monthly, seasonal or annual
496 averages). These data should inform assessments of the
497 significance of climate changes projected by the statisti-
498 cal downscaling (see below). For example, if the stan-
499 dard error of the model’s maximum daily temperature is
500 4°C, and projected future temperature changes are
501 smaller than this, then the model sensitivity to future
502 climate forcing is less than the model accuracy (i.e. the
503 temperature change could be an artefact of the model
504 parameters rather than regional forcing).
505 Similarly, the percentage of explained variance indi-
506 cates the extent to which daily variations in the local
507 predictand are determined by regional forcing. For spati-
508 ally conservative variables such as temperature 70%+
509 explained variance is not unusual; for heterogeneous
510 variables such as daily precipitation occurrence/amounts
511 �40% is more likely. Unfortunately, it is not possible
512 to specify an ‘acceptable’ level of explained variance
513 since model skill varies geographically, even for a com-
514 mon set of predictors. For example, precipitation models
515 tend to be most skillful for locations on western sea-
516 boards where zonal airflows transport moisture directly
517 from the ocean (McCabe and Dettinger, 1995).

518 3.4. Synthesize observed data

519 The ‘Synthesize’ operation generates ensembles of
520 synthetic daily weather series given daily observed (or
521 re-analysis) atmospheric predictor variables. The pro-
522 cedure enables the verification of calibrated models
523 (ideally using independent data) as well as the synthesis
524 of artificial time series for subsequent impacts model-
525 ling. The user simply selects a *.PAR file which contains
526 references to all necessary *.DAT files (both predictand
527 and predictors) along with associated regression model
528 weights. The user must also specify the period of record
529 to be synthesized as well as the desired number of
530 ensemble members. Finally, synthetic time series are
531 written to a user specified output file (*.OUT) for sub-
532 sequent analysis and/or use for impacts modelling.
533 Individual ensemble members are considered equally
534 plausible local climate scenarios realized by a common

1
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535suite of regional-scale predictors. The extent to which
536time series of different ensemble members differ
537depends on the relative significance of the deterministic
538and stochastic components of the regression models used
539for downscaling. For example, local temperatures are
540largely determined by regional forcing whereas precipi-
541tation series display more ‘noise’ arising from local fac-
542tors. The magnitude of deterministic forcing is indicated
543by the percentage of variance explained by the
544regression model (see above); the significance of the
545indeterminate or noise fraction by the standard error of
546the calibrated model.
547sdsm version 2.1 uses the standard errors to stochasti-
548cally reproduce the distribution of model residuals. Fol-
549lowing the method of Rubinstein (1981), a pseudo ran-
550dom number generator reproduces values from a normal
551distribution with standard deviation equal to the cali-
552bration standard error. This stochastic residual is added
553to the deterministic component on each day to inflate the
554variance of the downscaled series to accord better with
555daily observations. By adjusting a kurtosis parameter (in
556the ‘Settings’ screen) it is also possible to accommodate
557leptokurtic (peaked) or platykurtic (flat) distributions of
558residuals. Alternatively, if the model residuals are not
559homoscedastic, or if a fully deterministic model is pre-
560ferred, the stochastic component may be rendered inacti-
561vate by setting the kurtosis parameter to zero.
562Conditional models incorporate an additional stochas-
563tic process. In the case of wet-day occurrence, regional
564predictors are used to determine the probability of pre-
565cipitation (a value between zero and one), and a pseudo
566random number generator is used to determine the out-
567come (whether wet or dry). For example, if regional
568forcing indicates that the probability of precipitation
569occurrence, p=0.65, and the random number generator
570returns, r�0.65, then rainfall occurs; if r�0.65 then the
571day is dry.
572Two parameters in the ‘Settings’ screen can be
573adjusted to modify this unconditional process. Firstly,
574the ‘Event Threshold’ can be increased so that non-zero
575days are treated as first-state days during model cali-
576bration. For example, when downscaling daily precipi-
577tation occurrence the parameter might be set to
5780.3 mm/day to treat trace rain-days as dry-days. Simi-
579larly, the threshold for sunny versus cloudy days might
580be set at 1.0 h/day instead of the non-zero default. Sec-
581ondly, the ‘Bias Correction’ parameter compensates for
582any tendency in the downscaling model to over- or
583under-inflate the variance of the conditional process.

5843.5. Generate scenario

585The ‘Generate’ scenario operation produces
586ensembles of synthetic daily weather series given
587observed daily atmospheric predictor variables supplied
588by a GCM (either for current or future climate
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589 experiments). The procedure is identical to that of the
590 ‘Synthesize’ operation in all respects except that it may
591 be necessary to specify a different convention for model
592 dates. For example, HadCM2 assumes 12 months, each
593 with 30 days, giving a fixed year length of 360 days.
594 Alternatively, the Canadian Climate Center’s CGCM1
595 model has 365 days in every year (i.e. does not recognize
596 leap days). Note that there is a facility in the ‘Settings’
597 screen to de-activate leap years for downscaling using
598 GCM data of this format. Note also that the input files
599 (*.GCM) for both the ‘Synthesize’ and ‘Generate’
600 options need not be the same length as those used to
601 obtain the regression weights during the calibration
602 phase.

603 3.6. Analyse scenario/other data

604 The two ‘Analyse’ operations provide basic descrip-
605 tive statistics for sdsm derived scenarios (both synthetic
606 series and GCM derived scenarios) as well as for
607 observed data in the standard *.DAT file format. The
608 user specifies the file to be analysed, the required sub-
609 period, ensemble member or mean, where appropriate.
610 In return, sdsm computes the sample size, (percentage
611 of days wet and monthly precipitation totals if rainfall is
612 the specified variable), mean, maximum, minimum and
613 variance of synthetic (or observed) daily weather series
614 on a calendar month, and annual basis.

615 4. An illustration of sdsm application

616 Application of sdsm is demonstrated with respect to
617 future precipitation and temperature scenario generation
618 for Toronto, Canada. The procedure commenced with
619 the selection of a limited set of regional-scale predictor
620 variables from a larger suite of candidate variables
621 describing atmospheric circulation, thickness, stability
622 and moisture content over the target site (Table 3). All
623 candidate variables were either obtained directly from
624 the NCEP re-analysis (Kalnay et al., 1996), or were sec-
625 ondary variables derived from re-analysis data (e.g. daily
626 vorticity is derived from mean sea level pressure). Pre-
627 dictors for the period 1981–1990 were extracted from
628 the global fields (having first re-gridded the NCEP data
629 to the GCM grid) for the re-analysis grid-box nearest to
630 the target site. All predictors were standardized by their
631 respective 10-year means and standard deviations. The
632 first five years data (i.e. 1981–1985) were used for model
633 calibration; the remaining five (i.e. 1986–1990) for inde-
634 pendent model validation.
635 Candidate predictor variables were evaluated using
636 the ‘Screen Variables’ operation and a partial correlation
637 analysis conducted offline. Table 4 reports the most
638 promising combinations of daily predictor variables (and
639 corresponding predictand) when all data in the cali-
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195

196Table 4
197Partial correlation coefficients for predictor variables at Toronto 1981–
1981985. The bold values denote predictor variables selected for model
199calibration. The average percentage of explained variance (E%), and
200standard error (SE) for monthly models are also shown 201

210

Predictor Predictand 213

220

Tmax (°C) Tmin (°C) Prec (mm) 224

233

Lag-1 0.15 0.42 0.03 238

Wet �0.13 0.07 n/a 243

Tmean 0.45 0.35 �0.04 248

SH 0.14 0.03 0.06 253

RH �0.20 0.02 �0.01 258

Mslp �0.08 �0.03 �0.08 263

U 0.20 0.10 �0.04 268

V �0.02 0.13 0.40 273

F �0.01 0.12 0.04 278

Z �0.34 �0.19 0.20 283

z500 0.11 0.07 �0.05 288

E (%) 73 72 28 293

SE 2.8 2.6 3.9 298

640bration period were combined (i.e. data were not strati-
641fied by month). The percentage of explained variance
642and standard error for daily precipitation amounts,
643maximum and minimum temperatures are also shown.
644In line with previous studies (Burger, 1996; Wilby et al.,
6451998b), calibrated models explain approximately 70%+
646of the variance for daily temperature (maximum and
647minimum) and specific humidity (not shown), 40–60%
648for daily sunshine duration, solar radiation, wind speed
649and relative humidity (not shown), and less than 40%
650for precipitation. However, as shown by Fig. 3, these
651summary values conceal considerable seasonal vari-
652ations in the skill of individual predictor variables.
653Fig. 4 compares observed and downscaled monthly
654mean wet-day occurrence and maximum wet-/dry-spell
655lengths at Toronto for the validation period 1986–1990.
656(Note that maximum spell-length statistics were chosen
657because these are notoriously difficult to reproduce in
658conventional weather generator models.) Monthly pre-
659cipitation models were trained using daily observations
660at Toronto and the three regional predictors listed in
661Table 4 (specific humidity, meridional airflow and
662vorticity). Autocorrelation between successive wet-days
663was not explicitly incorporated (i.e. the lag-1 predictor
664was omitted). Nonetheless, the model captured the sea-
665sonal cycle of wet-day frequencies (winter maximum,
666summer minimum), and the weak autocorrelation
667between daily precipitation amounts (in both cases,
668r=+0.08). Overall, the model slightly over-estimated the
669frequency of wet-days, so the length of the average
670monthly maximum wet-spell was too long by +0.7 days,
671and the longest dry-spell too short by �1.8 days.
672Mean wet-day amounts were downscaled using the
673same predictors, and conditional on the precipitation
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28
29

30 Fig. 4. Validation of downscaled monthly mean wet-day frequencies
31 (% days), maximum dry-spell, and maximum wet-spell lengths (days)
32 at Toronto, 1986–1990.

674 occurrence process. The global Bias Correction para-
675 meter was set to 0.62, and the kurtosis parameter to 3
676 (indicating a truncated distribution of residuals). This
677 combination of parameters was found to best describe
678 the variance of daily wet-day amounts in the calibration
679 period. As Fig. 5 shows the resultant downscaling model
680 reproduced the seasonal cycle of precipitation amounts
681 and variance of the validation period, as well as the
682 August/September maxima in each parameter. However,
683 in line with other stochastic rainfall models, the variance
684 of daily precipitation amounts was generally underesti-
685 mated, most notably in summer.
686 Observed monthly means of maximum and minimum
687 daily temperature at Toronto for 1986–1990 were repro-
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688duced by the downscaling model with an average error
689of 0.8°C (not shown) using the predictor variables listed
690in Table 4. In both cases, the residuals of the daily tem-
691perature models were found to be normally distributed
692and, therefore, amenable to stochastic simulation. As
693Fig. 6 illustrates, with variance inflation, the downsca-
694ling model better reproduced the observed variance of
695maximum daily temperatures in each month. Without
696variance inflation, the model consistently underestimated
697monthly variance.
698Having re-trained the daily precipitation and tempera-
699ture models using observed predictor–predictand
700relationships for the full 10 year record (1981–1990), the
701models were next used to downscale equivalent regional
702predictor variables supplied by the Canadian Climate
703Center’s CGCM1 greenhouse-gas-plus-sulphate-aerosols
704experiment (Boer et al., 2000). Two 30-year time-slices
705were considered: 1961–1990 (indicative of current cli-
706mate forcing) and 2040–2069 (indicative of future cli-
707mate forcing). Following Karl et al. (1990) all predictor
708variables were standardized by the respective means and
709standard deviations of the corresponding predictor vari-
710ables in 1961–1990 model output. For comparative pur-
711poses, changes in CGCM1 monthly mean precipitation
712and temperatures were computed for the grid-box closest
713to Toronto.
714Fig. 7 shows percentage changes in monthly mean
715wet-day amounts at Toronto between 1961–1990 and
7162040–2069 suggested by CGCM1 and the statistical
717downscaling model. According to sdsm, annual precipi-
718tation totals at Toronto are projected to increase by +9%,
719compared with +3% in CGCM1. Both models show
720decreases in August–September precipitation and a large
721increase in January totals. However, there is less agree-
722ment about the magnitude of expected increases in
723March, June–July, and November. Remaining months
724return conflicting results in terms of the direction of pre-
725cipitation changes.
726Figs. 8 and 9 show changes in monthly mean tempera-
727tures at Toronto between 1961–1990 and 2040–2069, for
728maximum and minimum daily values, respectively. For
729both variables, CGCM1 suggests greater warming than
730sdsm. Annual mean maximum daily temperatures change
731by +3.2°C in the CGCM1 scenario and by +2.9°C in the
732sdsm scenario. The equivalent changes in annual mean
733minimum temperatures are +4.0 and +2.9°C, respect-
734ively. Both methods indicate that the greatest warming
735will occur in the period January–April, with much less
736warming in the remainder of the year. It should also be
737noted that the downscaled changes in maximum and
738minimum temperatures are greater than the standard
739error of the model during these four months (see
740Table 4).
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36

37
38

39 Fig. 5. Validation of downscaled monthly mean and variance of wet-day amounts (mm) at Toronto, 1986–1990.

41
42

43
44

45 Fig. 6. Validation of downscaled monthly variances of maximum
46 daily temperatures at Toronto, 1986–1990, with, and without, vari-
47 ance inflation.

741 5. Conclusions

742 sdsm is a Windows-based decision support tool for the
743 rapid development of single-site, ensemble scenarios of
744 daily weather variables under current and future regional
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49
50

51
52

53Fig. 7. Changes (%) in monthly mean wet-day amounts at Toronto
54between 1961–1990 and 2040–2069.

745climate forcing. Version 2.1 performs the tasks required
746to statistically downscale GCM output, namely: screen-
747ing of candidate predictor variables; model calibration;
748synthesis of current weather data; generation of future
749climate scenarios; diagnostic testing and basic statistical
750analyses. We note in passing, that many of these pro-
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58
59

60 Fig. 8. Changes (°C) in monthly mean maximum daily temperatures
61 at Toronto between 1961–1990 and 2040-2069.

63
64

65
66

67 Fig. 9. Changes (°C) in monthly mean minimum daily temperatures
68 at Toronto between 1961–1990 and 2040-2069.

751 cedures are transferable to seasonal forecasting of local
752 weather variables using coarse-resolution numerical
753 weather predictions (as in Lau et al., 1999).
754 As far as the authors are aware no comparable tool
755 exists in the public domain — for downscaling
756 ensembles of daily station data from the output of transi-
757 ent GCM runs. Nonetheless, the authors strongly caution
758 that the software should not be used uncritically as a
759 ‘black box’ . Rather the selection of predictor variables
760 should be based on physically sensible linkages between
761 large-scale forcing and local meteorological response.
762 Therefore, best practice demands the rigorous evaluation
763 of candidate predictor–predictand relationships prior to
764 downscaling.
765 To this end, several refinements of the existing
766 software are currently in progress

767 �768 Presently, many predictor variables such as airflow
769 indices (e.g. divergence and vorticity) must be com-
770 puted outside sdsm. A web-based tool will enable the
771 user to generate such variables directly from archives
772 of observed and GCM-derived data by simply point-
773 ing and clicking on a map of the target region. Any
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774re-gridding of observed predictors to conform to
775GCM grids will also be handled at the same time.
776� 777Few meteorological stations have 100% complete
778and/or fully accurate data sets. Handling of missing
779and imperfect data is necessary for most practical
780situations. Simple quality control checks will also
781enable the identification of gross data errors prior to
782model calibration.
783� 784More sophisticated data transformation and screening
785of candidate predictor variables are required. It is
786recognized that this step in the procedure still assumes
787a degree of local knowledge concerning the choice of
788most appropriate predictors. Additional statistics such
789as the cross-correlation matrix and partial correlations
790will enable the user to identify collinearity amongst
791potential predictors.
792� 793A greater range of diagnostic tests will facilitate more
794comprehensive statistical analyses of observed and
795downscaled weather series. Favoured diagnostics
796include: skewness; peaks above/below thresholds;
797percentiles; wet- and dry-spell lengths; and measures
798of high-frequency persistence, such as the autocorre-
799lation function. Graphing options that allow simul-
800taneous comparisons amongst two data sets will also
801enable more rapid assessment of downscaled versus
802observed, or current versus future climate scenarios.
803Furthermore, the user will be able to specify suites of
804diagnostics from a generic list of statistical tests.
805� 806A graphical interface will enhance the visualization
807of model outputs, to facilitate rapid reporting of
808model skill and/or local climate changes. This will be
809in the form of time-series plots, simple scatter plots
810and seasonal/monthly bar charts.

811All the above enhancements are being included in sdsm
812version 2.2, scheduled for release in September 2001.
813Daily precipitation amounts at individual stations con-
814tinue to be the most problematic variable to downscale,
815and research is ongoing to address this limitation. Multi-
816site downscaling may also be tackled in subsequent ver-
817sions of sdsm. In the meantime, the authors would wel-
818come any further suggestions about the design or appli-
819cation of sdsm, particularly from the wider climate
820change impacts community.
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